首页> 外文OA文献 >A mixed finite element method for Darcy’s equations with pressure dependent porosity
【2h】

A mixed finite element method for Darcy’s equations with pressure dependent porosity

机译:孔隙度与压力相关的达西方程的混合有限元方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work we develop the a priori and a posteriori error analyses of a mixed finite element method for Darcy’s equations with porosity depending exponentially on the pressure. A simple change of variable for this unknown allows to transform the original nonlinear problem into a linear one whosedual-mixed variational formulation falls into the frameworks of the generalized linear saddle point problems and the fixed point equations satisfied by an affine mapping. According to the latter, we are able to show the well-posedness of both the continuous and discrete schemes, as well as the associated Cea estimate, by simply applying a suitable combination of the classical Babuska-Brezzi theory and the Banach fixed point Theorem. In particular, given any integer k ≥ 0, the stability of the Galerkin scheme is guaranteed by employing Raviart-Thomas elements of order k for thevelocity, piecewise polynomials of degree k for the pressure, and continuous piecewise polynomials of degree k+1 for an additional Lagrange multiplier given by the trace of the pressure on the Neumann boundary. Note that the two ways of writing the continuous formulation suggest accordingly twodifferent methods for solving the discrete schemes. Next, we derive a reliable and efficient residualbased a posteriori error estimator for this problem. The global inf-sup condition satisfied by the continuous formulation, Helmholtz decompositions, and the local approximation properties of the Raviart-Thomas and Cl´ement interpolation operators are the main tools for proving the reliability. In turn, inverse and discrete inequalities, and the localization technique based on triangle-bubble and edge-bubble functions are utilized to show the efficiency. Finally, several numerical results illustrating the good performance of both methods, confirming the aforementioned properties of the estimator, and showing the behaviour of the associated adaptive algorithm, are reported.
机译:在这项工作中,我们为孔隙度与压力成指数关系的达西方程式开发了混合有限元方法的先验和后验误差分析。对此变量进行简单的更改,就可以将原始非线性问题转换为线性方程,其双重混合变分公式落入广义线性鞍点问题和通过仿射映射满足的不动点方程的框架。根据后者,我们可以通过简单地应用经典Babuska-Brezzi理论和Banach不动点定理的适当组合来显示连续和离散方案的适定性,以及相关的Cea估计。特别是,对于任何k≥0的整数,通过对速度使用k阶的Raviart-Thomas元素,对压力采用k阶的分段多项式以及对k阶采用k​​ + 1的连续分段多项式来保证Galerkin方案的稳定性。由诺伊曼边界上的压力轨迹给出的附加拉格朗日乘数。注意,写连续公式的两种方式相应地提出了两种解决离散方案的方法。接下来,我们针对该问题推导出可靠且有效的基于后验误差估计的残差。连续公式,亥姆霍兹分解以及Raviart-Thomas和Cl´ement插值算子的局部逼近性质满足的整体infsup条件是证明可靠性的主要工具。反过来,利用不等式和逆不等式以及基于三角形气泡和边缘气泡函数的定位技术来显示效率。最后,报告了一些数值结果,这些结果说明了两种方法的良好性能,确认了估计器的上述属性,并显示了相关自适应算法的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号